Expert Opinion

Expert commentary: FLYING TAXI

The prospect of a flying taxi that lifts you over the traffic and speeds you to your destination is an enticing one. But some experts suggest that ambitions to introduce aerial taxis within three or four years are potentially achievable, if not necessarily affordable. Here is what Aliaksei Stratsilatau, UAVOS Cofounder and Lead developer, thinks about that issue.

The main obstacle in creating a legal and regulatory framework for flights of unmanned aerotaxi-like vehicles remains the unresolved issue of automating the process of a pre-flight UAV inspection without the participation of professional technicians. As a result, each flight of an unmanned vehicle has to be accompanied by a team of specialists - as in a case with a real manned aircraft. This is especially true for flights over the city, populated areas and industrial facilities.

11 December 2018

UAVOS's Concept-Based Approach Towards The Army Robotics

How does the Automatic Control System for Moving Objects and Armaments work?

The significance of the Autopilot developed by UAVOS is the possibility of integrating the system into unmanned platforms of different operating environments with various mass-size characteristics.

The Automatic Control System is essentially an on-board computer with a proprietary software for automatic control of mobile objects, including a set of sensors: an inertial system, an air data system (ADS), a Global Navigation Satellite System (GNSS), a magnetic compass, etc. and actuation devices: servo-actuators, propellant charges, etc. The system configuration allows connecting to it ready-made third-party modules and entire systems in general.

31 August 2018

UAVOS's Autopilot Allows To Fly Without GPS And GNSS And Communication

The system of counteraction to GNSS spoofing attack is the result of many years of consistent work by UAVOS in the area of counter-EW.

The algorithms of radio electronic protection and automated control system by UAVOS provide effective counteraction to the most modern radio electronic interventions, depriving the enemy of the opportunity to take away from the route an unmanned aerial vehicle or to destabilize the operation of the on-board navigation system.

30 August 2018

THE DANGER OF LOSING CONTROL OF AN UNMANNED SYSTEM (US) OPERATED BY ARTIFICIAL INTELLIGENCE.

As experts in the field of automatic control systems and control algorithms, and thus robotic behavior, we believe it is too early to implement artificial intelligence into military systems.

Artificial intelligence (AI) is a strict set of algorithms. Implementing artificial intelligence is usually limited to video processing which can hardly be called artificial intelligence…even the term AI itself can be interpreted in many ways!

6 July 2018

SOLAR POWER MOVES AIRCRAFT AND INDUSTRY INTO THE FUTURE

HAPS (High Altitude Pseudo Satellite) is an innovative project aimed towards the future and capable of changing not only the UAV market and the scope of UAV utilization, but also adjacent markets. This will open new horizons to companies involved in the production of equipment for stratospheric aircraft.

The potential implementation of solar-powered UAVs is widening. From geo-synchronous flights, to flights in the northern latitudes HAPS are taking on more and more practical tasks, pushing high-tech companies to develop new unique instruments and equipment, first as prototypes, and in the future – as mass production for stratospheric operations.

6 June 2018

MAIN CAUSES OF UAV ACCIDENTS

Currently we are witnessing a process of transition from manual control to fully automatic mode of vehicle and machinery operations. Automated systems are gradually replacing humans, and the reliability of technology is increasing. And we believe that the main reason of accidents is the human factor, although equipment failure is often the main cause of accidents for budgetary drones.

In today's unmanned aircrafts, it is impossible to single out the main problem leading to accidents, since in different segments the key reasons are different factors. For example, if we look at cheapest drones worth up to $4000, then we will immediately find out a whole bunch of problems affecting flight safety.

14 April 2018


COUNTERACTION TO MODERN MEANS OF RADIO ELECTRONIC WARFARE

At the present time, the main and most effective means of combating small-sized UAVs equipped with MEMS-based avionics (micro electromechanical systems) of gyroscopes and accelerometers that are characterized by low cost and miniaturized dimensions, in contrast to high-precision fiber-optic PINS (platformless inertial navigation system) is using jamming countermeasures on the GNSS (satellite radio navigation signals GNSS).

Ordinarily, the vast majority of such small-sized UAVs after the loss of the GNSS signal lose orientation and fall, or make a forced parachute landing or automatic landing – as in case with multi-rotor UAV systems.

10 April 2018


THE EXPERIENCE OF UAVOS IN THE CREATION OF HAPS

For more than 40 years, leading aircraft manufacturers have been working on the development of unmanned airplane-type aircraft capable of operating for a long time (from several days to several years) at altitudes of 60,000 - 100,000 feet (18,000-30,000 m).

UAVOS also has such experience. Our team has been working on a project to create HAPS Apus for more than 5 years. During this time we managed to build more than 20 modifications of the aircraft and successfully tested 3 new aerodynamic schemes of the aircraft.

4 April 2018


UAVOS AUTOMATIC CONTROL SYSTEM FOR UAV AP10

To integrate the autopilot into various mobile platforms, both airborne and surface (above ground/water) based, ranging from 2.2 lb to 2626 lb (1 kg to 1200 kg), UAVOS engineers implemented the concept of a multi-platform modular design of the automatic control system for moving objects.

The main feature of the AP10 automatic control system is a distributed architecture, when each component of the system has its own microcontroller providing data processing and communication with other components within the CAN network (Controller Area Network). The AP10 configuration allows to avoid loading the central processor with routine tasks by distributing management tasks to all system components. At the same time there are efficiently no restrictions on the number of the same-type modules, which makes it possible to implement multiple redundancy on all levels. Almost any payload, or ready-made third-party modules and entire systems can be connected to the system by adding IFC interfaces to the network.

28 March 2018

For press & media enquiries, contact:
Taisia Vasiukovich
This email address is being protected from spambots. You need JavaScript enabled to view it.
Tel: +1 650 584-3176

Connect with us

UAVOS INC  All rights reserved. 2018